Classification of left and right hand motor imagery EEG signals by using deep neural networks

نویسندگان

چکیده

The brain-computer interface (BCI) is one of the most promising technologies that allows us to establish a relationship between brain and devices. In this study, three-channel EEG signals collected from nine subjects performing two motor imagery tasks are classified using different deep neural network (DNN) based approaches called framework 1 (FW1) 2 (FW2). proposed frameworks were evaluated BCI Competition IV-IIb dataset. FW1, raw data directly presented without any pre-processing. FW2, first filtered with five band pass filters fifth order (Butterworth), then common spatial patterns (CSP) method, which introduces additional pseudo channels, applied signals. Two experiments conducted for each framework. experiment, unique DNN trained subject, in second experiment only combination training sets all subjects. performance compared terms average accuracy. According simulation results, we did not observe significant difference classification accuracies obtained experiments. Therefore, concluded that, by use DNNs do need train several subject-specific networks requires high computational loads. On other hand, observed significantly improves filtering extracting features CSP pre-processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal

The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...

متن کامل

Classification of EEG-based motor imagery BCI by using ECOC

AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...

متن کامل

Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters.

Electroencephalogram (EEG) recordings during right and left motor imagery can be used to move a cursor to a target on a computer screen. Such an EEG-based brain-computer interface (BCI) can provide a new communication channel to replace an impaired motor function. It can be used by, e.g., patients with amyotrophic lateral sclerosis (ALS) to develop a simple binary response in order to reply to ...

متن کامل

Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

متن کامل

Body-Specific Motor Imagery of Hand Actions: Neural Evidence from Right- and Left-Handers

If motor imagery uses neural structures involved in action execution, then the neural correlates of imagining an action should differ between individuals who tend to execute the action differently. Here we report fMRI data showing that motor imagery is influenced by the way people habitually perform motor actions with their particular bodies; that is, motor imagery is 'body-specific' (Casasanto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Applied Mathematics, Electronics and Computers

سال: 2021

ISSN: ['2147-8228']

DOI: https://doi.org/10.18100/ijamec.995022